资源类型

期刊论文 140

年份

2023 5

2022 9

2021 13

2020 14

2019 7

2018 6

2017 5

2016 7

2015 4

2014 7

2013 11

2012 4

2011 7

2010 7

2009 6

2008 6

2007 4

2006 2

2005 4

2004 1

展开 ︾

关键词

三峡升船机 3

三峡工程 2

升船机 2

圆柱 2

塔柱 2

提取冶金 2

施工技术 2

精度控制 2

螺母柱 2

裂缝 2

齿条 2

ANSYS 1

COVID-19 1

T形节点 1

k-ε模型 1

“∞”形 1

三维有限元 1

临时矿壁 1

互花米草 1

展开 ︾

检索范围:

排序: 展示方式:

Optimal design of extractive dividing-wall column using an efficient equation-oriented approach

Yingjie Ma, Nan Zhang, Jie Li, Cuiwen Cao

《化学科学与工程前沿(英文)》 2021年 第15卷 第1期   页码 72-89 doi: 10.1007/s11705-020-1977-y

摘要: The extractive dividing-wall column (EDWC) is one of the most efficient technologies for separation of azeotropic or close boiling-point mixtures, but its design is fairly challenging. In this paper we extend the hybrid feasible path optimisation algorithm (Ma Y, McLaughlan M, Zhang N, Li J. Computers & Chemical Engineering, 2020, 143: 107058) for such optimal design. The tolerances-relaxation integration method is refined to allow for long enough integration time that can ensure the solution of the pseudo-transient continuation simulation close to the steady state before the required tolerance is used. To ensure the gradient and Jacobian information available for optimisation, we allow a relaxed tolerance for the simulation in the sensitivity analysis mode when the simulation diverges under small tolerance. In addition, valid lower bounds on purity of the recycled entrainer and the vapour flow rate in column sections are imposed to improve computational efficiency. The computational results demonstrate that the extended hybrid algorithm can achieve better design of the EDWC compared to those in literature. The energy consumption can be reduced by more than 20% compared with existing literature report. In addition, the optimal design of the heat pump assisted EDWC is achieved using the improved hybrid algorithm for the first time.

关键词: design     extractive dividing-wall column     equation-oriented optimisation     pseudo-transient continuation model     hybrid algorithm    

Determination of a suitable index for a solvent via two-column extractive distillation using a heuristic

Zhaoyou Zhu, Guoxuan Li, Yao Dai, Peizhe Cui, Dongmei Xu, Yinglong Wang

《化学科学与工程前沿(英文)》 2020年 第14卷 第5期   页码 824-833 doi: 10.1007/s11705-019-1867-3

摘要: The traditional approach to solvent selection in the extractive distillation process strictly focuses on the change in the relative volatility of light-heavy components induced by the solvent. However, the total annual cost of the process may not be minimal when the solvent induces the largest change in relative volatility. This work presents a heuristic method for selecting the optimal solvent to minimize the total annual cost. The functional relationship between the relative volatility and the total annual cost is established, where the main factors, such as the relative volatility of the light-heavy components and the relative volatility of the heavy-component solvent, are taken into account. Binary azeotropic mixtures of methanol-toluene and methanol-acetone are separated to verify the feasibility of the model. The results show that using the solvent with the minimal two-column extractive distillation index, the process achieves a minimal total annual cost. The method is conducive for sustainable advancements in chemistry and engineering because a suitable solvent can be selected without simulation verification.

关键词: heuristic method     solvent selection     extractive distillation     total annual cost    

Energy-efficient recovery of tetrahydrofuran and ethyl acetate by triple-column extractive distillation

Ao Yang, Yang Su, Tao Shi, Jingzheng Ren, Weifeng Shen, Teng Zhou

《化学科学与工程前沿(英文)》 2022年 第16卷 第2期   页码 303-315 doi: 10.1007/s11705-021-2044-z

摘要: An energy-efficient triple-column extractive distillation process is developed for recovering tetrahydrofuran and ethyl acetate from industrial effluent. The process development follows a rigorous hierarchical design procedure that involves entrainer design, thermodynamic analysis, process design and optimization, and heat integration. The computer-aided molecular design method is firstly used to find promising entrainer candidates and the best one is determined via rigorous thermodynamic analysis. Subsequently, the direct and indirect triple-column extractive distillation processes are proposed in the conceptual design step. These two extractive distillation processes are then optimized by employing an improved genetic algorithm. Finally, heat integration is performed to further reduce the process energy consumption. The results indicate that the indirect extractive distillation process with heat integration shows the highest performance in terms of the process economics.

关键词: extractive distillation     solvent selection     conceptual design     process optimization     heat integration    

evaluation of low-rise infilled reinforced concrete frames designed by considering local effects on column

《结构与土木工程前沿(英文)》 2023年 第17卷 第5期   页码 686-703 doi: 10.1007/s11709-023-0937-2

摘要: The interactions between reinforced concrete (RC) frames and infill walls play an important role in the seismic response of frames, particularly for low-rise frames. Infill walls can increase the overall lateral strength and stiffness of the frame owing to their high strength and stiffness. However, local wall-frame interactions can also lead to increased shear demand in the columns owing to the compressive diagonal strut force from the inll wall, which can result in failure or in serious situations, collapse. In this study, the effectiveness of a design strategy to consider the complex infill wall interaction was investigated. The approach was used to design example RC frames with infill walls in locations with different seismicity levels in Thailand. The performance of these frames was assessed using nonlinear static, and dynamic analyses. The performance of the frames and the failure modes were compared with those of frames designed without considering the infill wall or the local interactions. It was found that even though the overall responses of the buildings designed with and without consideration of the local interaction of the infill walls were similar in terms the overall lateral strength, the failure modes were different. The proposed method can eliminate the column shear failure from the building. Finally, the merits and limitations of this approach are discussed and summarized.

关键词: reinforced concrete frames     infill wall     seismic design method     shear failure     wall-frame interaction    

Extractive desulfurization of model fuels with a nitrogen-containing heterocyclic ionic liquid

《化学科学与工程前沿(英文)》 2022年 第16卷 第12期   页码 1735-1742 doi: 10.1007/s11705-022-2167-x

摘要: A nitrogen-containing ionic liquid was synthesized using an aromatic nitrogen-containing heterocyclic and an amino acid, and applied to the extractive desulfurization process to remove benzothiophene, dibenzothiophene, and 4,6-dimethyldibenzothiphene from a model fuel oil. Chemical characterizations and simulation using Gaussian 09 software confirmed the rationality of an ionic liquid structure. Classification of non-covalent interactions between the ionic liquid and the three sulfur-containing contaminants was studied by reduced density gradient analysis. The viscosity of the ionic liquid was adjusted by addition of polyethylene glycol. Under extraction conditions of the volume of ionic liquid to oil as 1:1 and temperature as room temperature, the desulfurization selectivity of ionic liquid followed the order of 4,6-dimethyldibenzothiphene (15 min) < benzothiophene (15 min) ≈ dibenzothiophene (10 min). Addition of p-xylene and cyclohexene to the fuel oil had little effect. The extractant remained stable and effective after multiple regeneration cycles.

关键词: extractive desulfurization     nitrogen-containing heterocyclic ionic liquid     reduced density gradient analysis     desulfurization selectivity    

Systematic screening procedure and innovative energy-saving design for ionic liquid-based extractive

《化学科学与工程前沿(英文)》 2023年 第17卷 第1期   页码 34-45 doi: 10.1007/s11705-022-2234-3

摘要: In the traditional extractive distillation process, organic solvents are often used as entrainers. However, environmental influence and high energy-consumption are significant problems in industrial application. In this study, a systematic screening strategy and innovative energy-saving design for ionic liquid-based extractive distillation process was proposed. The innovative energy-saving design focused on the binary minimum azeotrope mixtures isopropanol and water. Miscibility, environmental impact and physical properties (e.g., melting point and viscosity) of 30 ionic liquids were investigated. 1-Ethyl-3-methyl-imidazolium dicyanamide and 1-butyl-3-methyl-imidazolium dicyanamide were selected as candidate entrainers. Feasibility analysis of these two ionic liquids was further performed via residue curve maps, isovolatility line and temperature profiles. An innovative ionic liquid-based extractive distillation process combining distillation column and stripping column was designed and optimized with the objective function of minimizing the total annualized cost. The results demonstrate that the total annualized cost was reduced by 19.9% with 1-ethyl-3-methyl-imidazolium dicyanamide as the entrainer and by 24.3% with 1-butyl-3-methyl-imidazolium dicyanamide, compared with that of dimethyl sulfoxide. The method proposed in this study is conducive to the green and sustainable development of extractive distillation process.

关键词: ionic liquid     entrainer screening     feasibility analysis     extractive distillation    

Combining extractive heterogeneous-azeotropic distillation and hydrophilic pervaporation for enhanced

Eniko Haaz, Botond Szilagyi, Daniel Fozer, Andras Jozsef Toth

《化学科学与工程前沿(英文)》 2020年 第14卷 第5期   页码 913-927 doi: 10.1007/s11705-019-1877-1

摘要: The separation of non-ideal mixtures using distillation can be an extremely complex process and there continues to be a need to further improve these techniques. A new method which combines extractive heterogeneous-azeotropic distillation (EHAD) and hydrophilic pervaporation (HPV) for the separation of non-ideal ternary mixtures is demonstrated. This improved distillation method combines the benefits of heterogeneous-azeotropic and extractive distillations in one column but no added materials are needed as is usually the case with pervaporation. The separation of water-methanol-ethyl acetate and water-methanol-isopropyl acetate mixtures were investigated to demonstrate the accuracy of the combined EHAD/HPV technique. There is not currently an established treatment strategy for the separation of the second mixtures in the literature. These separation processes were rigorously modelled and optimized using a professional flowsheet. The objective functions were total cost and energy consumption and heat integration was also investigated. The verification of the process modelling was carried out using laboratory-scale measurements. Extractive heterogeneous-distillation combined with methanol dehydration was found to be more efficient than conventional distillation for the separation of these highly non-ideal mixtures.

关键词: hydrophilic pervaporation     non-ideal mixture     modelling     extractive heterogeneous-azeotropic distillation     heat integration    

Methyl acetate–methanol mixture separation by extractive distillation: Economic aspects

Elena Graczová, Branislav Šulgan, Samuel Barabas, Pavol Steltenpohl

《化学科学与工程前沿(英文)》 2018年 第12卷 第4期   页码 670-682 doi: 10.1007/s11705-018-1769-9

摘要:

Methyl acetate is considered low toxicity volatile solvent produced either as a by-product during methanol carbonylation or via acetic acid esterification with methanol. In both cases, pure methyl acetate has to be isolated from the reaction mixture. Simulation of methyl acetate separation from its mixture with methanol by extraction distillation was carried out in ASPEN+ software. In total three case studies were assumed using two different extraction solvents and two solvent regeneration strategies. In case A, novel extraction solvent 1-ethyl-3-methylimidazolium trifluoromethanesulfonate ionic liquid, was considered. Raw material separation was achieved in an extraction distillation column while the solvent regeneration was accomplished in a second distillation column in this case. In case study B, the same extraction solvent was used; however, its regeneration was carried out in a single-effect evaporator. Dimethyl sulfoxide was the second extraction solvent selected. Its use in methyl acetate-methanol separation is presented in case study C. As high purity of dimethyl sulfoxide was required for the methyl acetate-methanol azeotrope breaking, its regeneration was carried out in the second distillation column only. To simulate the ternary methyl acetate–methanol–extraction solvent mixtures separation, vapor–liquid equilibrium was predicted based on the NRTL equation. Further, unknown properties of the considered ionic liquid and variation of these properties with temperature were predicted and introduced into the ASPEN+ components properties database. Based on these data, optimum operation parameters of the respective separation equipment were established. In all case studies, the same condition had to be fulfilled, namely minimum methyl acetate content in the distillate from the extraction distillation column of 99.5mol-%. Results of simulations using the respective optimum operation parameters were employed in the economic evaluation of the three separation unit designs studied. It was found that the least energy-demanding design corresponds to the case study B in terms of both capital as well as operation expenses.

关键词: methyl acetate     1-ethyl-3-methylimidazolium trifluoromethanesulfonate     extraction distillation     dimethyl sulfoxide     economic evaluation    

Special Column on

《结构与土木工程前沿(英文)》 2014年 第8卷 第4期   页码 323-324 doi: 10.1007/s11709-014-0288-0

Simulation of bubble column reactors using CFD coupled with a population balance model

Tiefeng WANG

《化学科学与工程前沿(英文)》 2011年 第5卷 第2期   页码 162-172 doi: 10.1007/s11705-009-0267-5

摘要: Bubble columns are widely used in chemical and biochemical processes due to their excellent mass and heat transfer characteristics and simple construction. However, their fundamental hydrodynamic behaviors, which are essential for reactor scale-up and design, are still not fully understood. To develop design tools for engineering purposes, much research has been carried out in the area of computational fluid dynamics (CFD) modeling and simulation of gas-liquid flows. Due to the importance of the bubble behavior, the bubble size distribution must be considered in the CFD models. The population balance model (PBM) is an effective approach to predict the bubble size distribution, and great efforts have been made in recent years to couple the PBM into CFD simulations. This article gives a selective review of the modeling and simulation of bubble column reactors using CFD coupled with PBM. Bubble breakup and coalescence models due to different mechanisms are discussed. It is shown that the CFD-PBM coupled model with proper bubble breakup and coalescence models and interphase force formulations has the ability of predicting the complex hydrodynamics in different flow regimes and, thus, provides a unified description of both the homogeneous and heterogeneous regimes. Further study is needed to improve the models of bubble coalescence and breakup, turbulence modification in high gas holdup, and interphase forces of bubble swarms.

关键词: bubble column     computational fluid dynamics     bubble breakup and coalescence     population balance model     bubble size distribution    

清洁高效的提取冶金——矿浆电解

邱定蕃

《中国工程科学》 1999年 第1卷 第1期   页码 67-72

摘要:

环境污染和能源短缺是重有色金属冶炼的两大障碍。在对重有色金属湿法冶金存在主要问题进行分析的基础上研究成功的矿浆电解新技术,是一种清洁、高效的提取冶金。它具有流程短、能耗低、金属分离好和环境污染少等特点。矿浆电解的显著特点是充分利用了电积过程的阳极反应来浸出矿石,工艺能耗大大降低;在电解槽中硫化物转化为元素硫,而不产生硫酸,有利于环境保护。文章描述了国内外矿浆电解技术的发展过程及我国建立的世界上第一个矿浆电解工业生产厂的概况,指出我国在该领域处于世界领先地位和矿浆电解技术具有很好的前景。

关键词: 重有色金属     湿法冶金     矿浆电解     提取冶金    

Special Column on Multiscale Stochastic Finite Element Method

《结构与土木工程前沿(英文)》 2015年 第9卷 第2期   页码 105-106 doi: 10.1007/s11709-015-0297-7

Special column: solar energy conversion

Yun Hang HU, Fangming JIN

《能源前沿(英文)》 2019年 第13卷 第2期   页码 205-206 doi: 10.1007/s11708-019-0636-9

Numerical simulation of squat reinforced concrete wall strengthened by FRP composite material

Ali KEZMANE,Said BOUKAIS,Mohand Hamizi

《结构与土木工程前沿(英文)》 2016年 第10卷 第4期   页码 445-455 doi: 10.1007/s11709-016-0339-9

摘要: The advanced design rules and the latest known earthquakes, have imposed a strengthening of reinforced concrete structures. Many research works and practical achievements of the application of the external reinforcement by using FRP composite materials have been particularly developed in the recent years. This type of strengthening seems promising for the seismic reinforcement of buildings. Among of the components of structures that could affect the stability of the structure in case of an earthquake is the reinforced concrete walls, which require in many cases a strengthening, especially in case where the diagonal cracks can be developed. The intent of this paper is to present a numerical simulation of squat reinforced concrete wall strengthened by FRP composite material (carbon fiber epoxy). The intent of this study is to perform finite element model to investigate the effects of such reinforcement in the squat reinforced concrete walls. Taking advantage of a commercial finite element package ABAQUS code, three-dimensional numerical simulations were performed, addressing the parameters associated with the squat reinforced concrete walls. An elasto-plastic damage model material is used for concrete, for steel, an elastic-plastic behavior is adopted, and the FRP composite is considered unidirectional and orthotropic. The obtained results in terms of displacements, stresses, damage illustrate clearly the importance of this strengthening strategy.

关键词: simulation     strengthening     reinforced concrete wall     squat wall     FRP composite material     damage     Abaqus    

Nonlinear analysis of pre-tensioned glass wall facade by stability function with initial imperfection

Siu-Lai CHAN, Yaopeng LIU, Andy LEE,

《结构与土木工程前沿(英文)》 2010年 第4卷 第3期   页码 376-382 doi: 10.1007/s11709-010-0086-2

摘要: Pre-tensioned high strength trusses using alloy steel bar are widely used as glass wall supporting systems because of the high degree of transparency. The breakage of glass panes in this type of system occurs occasionally, likely to be due to error in design and analysis in addition to other factors like glass impurity and stress concentration around opening in a spider system. Most design does not consider the flexibility of supports from finite stiffness of supporting steel or reinforced concrete beams. The resistance of lateral wind pressure of the system makes use of high tension force coupled with the large deflection effect, both of which are affected by many parameters not generally considered in conventional structures. In the design, one must therefore give a careful consideration on various effects, such as support settlement due to live loads and material creep, temperature change, pre-tension force, and wind pressure. It is not uncommon to see many similar glass wall systems fail in the wind load test chambers under a design wind speed. This paper presents a rigorous analysis and design of this type of structural systems used in a project in Hong Kong, China. The stability function with initial curvature is used in place of the cubic function, which is only accurate for linear analysis. The considerations and analysis techniques are believed to be of value to engineers involved in the design of the structural systems behaving nonlinearly.

关键词: tension system     glass wall     nonlinear analysis     pre-tensioning     second-order analysis    

标题 作者 时间 类型 操作

Optimal design of extractive dividing-wall column using an efficient equation-oriented approach

Yingjie Ma, Nan Zhang, Jie Li, Cuiwen Cao

期刊论文

Determination of a suitable index for a solvent via two-column extractive distillation using a heuristic

Zhaoyou Zhu, Guoxuan Li, Yao Dai, Peizhe Cui, Dongmei Xu, Yinglong Wang

期刊论文

Energy-efficient recovery of tetrahydrofuran and ethyl acetate by triple-column extractive distillation

Ao Yang, Yang Su, Tao Shi, Jingzheng Ren, Weifeng Shen, Teng Zhou

期刊论文

evaluation of low-rise infilled reinforced concrete frames designed by considering local effects on column

期刊论文

Extractive desulfurization of model fuels with a nitrogen-containing heterocyclic ionic liquid

期刊论文

Systematic screening procedure and innovative energy-saving design for ionic liquid-based extractive

期刊论文

Combining extractive heterogeneous-azeotropic distillation and hydrophilic pervaporation for enhanced

Eniko Haaz, Botond Szilagyi, Daniel Fozer, Andras Jozsef Toth

期刊论文

Methyl acetate–methanol mixture separation by extractive distillation: Economic aspects

Elena Graczová, Branislav Šulgan, Samuel Barabas, Pavol Steltenpohl

期刊论文

Special Column on

期刊论文

Simulation of bubble column reactors using CFD coupled with a population balance model

Tiefeng WANG

期刊论文

清洁高效的提取冶金——矿浆电解

邱定蕃

期刊论文

Special Column on Multiscale Stochastic Finite Element Method

期刊论文

Special column: solar energy conversion

Yun Hang HU, Fangming JIN

期刊论文

Numerical simulation of squat reinforced concrete wall strengthened by FRP composite material

Ali KEZMANE,Said BOUKAIS,Mohand Hamizi

期刊论文

Nonlinear analysis of pre-tensioned glass wall facade by stability function with initial imperfection

Siu-Lai CHAN, Yaopeng LIU, Andy LEE,

期刊论文